Author Archives: admin

Working Lands for Wildlife – Graphic Designer – Request for Proposals

Contractor Opportunity: Graphic Designer

Location: Remote

Deadline: October 5, 2020

Summary: Pheasants Forever, Inc., invites qualified contractors to submit proposals for graphic design, illustrations, and document design for the Working Lands for Wildlife initiative. Please download the Request for Proposal (RFP) for full specifications.  All inquiries regarding proposal submission may be directed to Sarah Marquart at 651-209-4920 or smarquart@pheasantsforever.org.

Interested parties can also access the RFP and additional details at Pheasants Forever’s website here.


 

Working Lands for Wildlife – Writer – Request for Proposals

Contractor Opportunity: Writer

Location: Remote

Deadline: September 28, 2020

Summary: Pheasants Forever, Inc., invites qualified contractors to submit proposals to write Working Lands for Wildlife initiative communications materials. Please download the Request for Proposal (RFP) for full specifications.  All inquiries regarding proposal submission may be directed to Sarah Marquart at 651-209-4920 or smarquart@pheasantsforever.org.

 

Interested parties can also access the RFP and additional details at Pheasants Forever’s website here.


 

Working Lands for Wildlife Communications Coordinator – Request for Proposals

Contractor Opportunity: Communications Coordinator

Location: Remote

Deadline: September 28, 2020

Summary: Pheasants Forever, Inc., invites qualified contractors to submit proposals for the Working Lands for Wildlife Communications Coordinator position. Please download the Request for Proposal (RFP) for full specifications.  All inquiries regarding proposal submission may be directed to Sarah Marquart at 651-209-4920 or smarquart@pheasantsforever.org.

Interested parties can also access the RFP and additional details at Pheasants Forever’s website here.


 

Working Lands for Wildlife – Digital Services – Request for Proposals

Contractor Opportunity: Digital Services

Location: Remote

Deadline: September 28, 2020

Summary: Pheasants Forever, Inc., invites qualified contractors to submit proposals for digital services (website maintenance, troubleshooting and enhancements, email system maintenance and development, and Google Ads Grant management) for the Working Lands for Wildlife initiative. Please download the Request for Proposal (RFP) for full specifications.  All inquiries regarding proposal submission may be directed to Sarah Marquart at 651-209-4920 or smarquart@pheasantsforever.org.

Interested parties can also access the RFP and additional details at Pheasants Forever’s website here.


 

NM Grasslands

Take the Chicken Challenge | Prairie Habitat

NM Grasslands

Lesser prairie-chickens need large expanses of prairie with diverse grasses, forbs and shrubs for all aspects of their lives as seen in this photo of New Mexico. Photo: Andy Lawrence.


This Chicken Challenge focuses on the prairie habitat where lesser prairie-chickens live. Test your knowledge of lesser prairie-chicken habitat with the quiz below. Good luck!


Fun Facts:

  • The lesser prairie-chicken lives in five states in the southern Great Plains: Kansas, Texas, Oklahoma, New Mexico and Colorado.

 

  • Lesser prairie-chickens require large expanses of native prairie habitat for their life cycles. Habitat fragmentation by roads, residential and industrial development and conversion of prairie to cropland are two of the biggest threats to prairie-chicken habitat.

 

  • In addition to large, intact landscapes, lesser prairie-chickens need habitat with a diverse mix of plants that include grasses, forbs and shrubs.

 

  • Prescribed grazing practices can help improve habitat for prairie-chickens by fostering the diversity of plants that prairie-chickens need. Fence marking can help mitigate collisions when temporary or permanent fencing is used for prescribed grazing management.

Take the Chicken Challenge | Prairie Habitat


 

Ask an Expert | Fire and the Great Plains

Large wildfires are becoming more frequent on the Great Plains, driven, in part, by more woody vegetation. This photo shows eastern redcedars burning on the Carr Ranch during the Anderson Creek wildfire.


Fire has long played a leading role shaping the ecology of the Great Plains. Whether lightning-caused or human-induced, research shows that much of the Great Plains experienced fire frequently, every fourteen to less than two years depending on region. Recurrent fire helped create and maintain the diverse grassland ecosystems – short grass, mixed grass and tallgrass prairies – that exist across the Plains. Fires also controlled woody species presence throughout the region, confining trees and shrubs to sites where fire was less frequent or absent due to topographical, climatic, or other natural conditions.

Over the last couple of centuries, the removal of indigenous fire ignitions and widespread fire suppression throughout the region drastically altered this historic fire regime. In a short period of ecological time, the Plains went from one of the most frequently burned regions on the planet to one where fire became relatively scarce, allowing woody species and associated fuel loads to build and expand. Today, wildfire, specifically large, damaging wildfires, have greatly increased in frequency and severity across the Plains. The 33 documented large wildfires that burned in the Plains from 1985 to 1994 have been eclipsed by 117 large wildfires that burned in the next 10 years (2005-2014).

Woody expansion is causing a shift from grasslands to woodlands in central North America, and this shift is collapsing wildlife diversity, heightening wildfire risk, and crashing grazing land profitability. In short, woody expansion is threatening the very characteristics that make the Great Plains so productive.

Fires that deter woody expansion are driven by complex interactions between climate, fuel loads, land use, and human behavior. Dr. Victoria Donovan and her team of researchers at the University of Nebraska are at the cutting edge of understanding the various roles of fire as a driver of plant community change in central North America. We sat down with Dr. Donovan to learn more from her two new papers: Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains and Resilience to Large, ‘Catastrophic’ Wildfires in North America’s Grassland Biome.


These two papers focus on fire in the Great Plains. Scientists have concluded that fire was once a regular part of the Great Plains ecosystem, but that’s no longer the case. Why were you and the team interested in studying large wildfires in the Great Plains?

While we know that large wildfires have been increasing substantially across forested regions of the western U.S. for some time, recent increases in large wildfire are relatively new in the Great Plains. This offers us the opportunity to understand shifting wildfire patterns in this region and possibly get ahead of some of the risks large wildfire can pose to people by learning how to better manage wildfire to prevent loss of human life and property.

Let’s start with the paper called Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S. Great Plains. Your team analyzed large wildfires in the Great Plains from 1993 to 2014 and overlaid the boundaries of those fires onto a map. You then analyzed the various types of land use, which you classified into five types – grassland, woody vegetation, cropland, pasture and hay fields, and developed areas – within the fire boundaries. What were you looking for?

We wanted to understand how land use might be playing a role in shifting wildfire patterns by identifying which land-use types have the highest propensity for wildfire. Around the world, different land-use types, including agricultural and developed lands, are known to affect wildfire occurrence differently. Over the last century, the Great Plains has seen drastic shifts in land-use following Euro-American settlement, including agricultural conversion and development, along with widespread woody encroachment of grassland systems. Today’s wildfires are occurring within that altered landscape. Since our previous research showed a surge in wildfire activity in the Great Plains, a clear question for us was to determine whether this surge was tied to different land uses.

You note that in 11 of the 14 ecoregions you analyzed: “areas burned by large wildfire were primarily composed of woody vegetation and grassland.” Why are these land-use types more susceptible to large fires?

There are a number of reasons why we saw more fires in these land-use types. Grasses are one of the most flammable fuel types on the planet, and they are highly adapted to and have properties that promote frequent fire. While woody vegetation communities do not typically experience fires as frequently as grasslands, they offer an abundance of fuels that promote large fires once ignited. In contrast with grasslands, vegetation in pastures, hay fields, and crops generally have different fuel properties that make them less susceptible to fire. For instance, the plants in these areas tend to hold more moisture, which can make it much more difficult for fire to ignite and spread. Irrigation could also play a role in this. This result is consistent with research that suggests that crop fields may actually act as a barrier to fire spread in some regions of the world, which is interesting since we know that agricultural lands are some of the most frequently burned land use types elsewhere in the world. There are social reasons as well. For instance, fire suppression is more likely to be successful for a wildfire burning through a grassland than one burning through forest canopy.

Dr. Donovan’s team found that grasslands and woody vegetation are the land-use types with the highest propensity for large wildfires. Figure courtesy of Dr. Donovan.

It makes sense that intact grasslands burned more than crops or developed areas, but you found that woody vegetation “burned proportionately more than any other type of land-use in the Great Plains.” What do you mean by that and why is it important?

We found that of all of the land-use types in the Great Plains, large wildfire is most likely to burn in woody vegetation. This means woody vegetation is associated with the highest large wildfire risk. This is extremely important because we know that woody vegetation is increasing across much of the Great Plains by invading our grassland systems. We also know that wildfires that occur in woody vegetation are generally more difficult for us to put out. Consider a campfire: You might use a few handfuls of dried grass as a way to get the fire started, but if you don’t add some logs to it, it will burn out quickly. The same is true in natural systems. Woody vegetation generally offers more fuels that can burn longer and more intensely than grasses. To add to that, trees grow much taller than grasses. Imagine trying to put out your campfire when it is a few stories above you.

We know many grasslands are transitioning to woody vegetation in the Great Plains because we have removed the frequent fires that used to burn through grasslands. We also know that tree planting is a common practice across much of the Great Plains and these have served as seed sources for invasion into more intact grassland systems. What our results suggest is that if we continue to promote woody vegetation across the Great Plains, we are also going to be increasing our risk for large wildfires that are more difficult for us to control.

Woody vegetation is the most likely type of land use to burn in the Great Plains. Figure courtesy of Dr. Donovan.

Let’s shift gears to the second paper called Resilience to Large, ‘Catastrophic’ Wildfires in North America’s Grassland Biome. Will you explain what you mean by “resilience”?

Resilience is the amount of change that an ecosystem like a grassland can experience before shifting into something else, like a desert. When we were considering resilience in this study, we were tracking whether vegetation cover in an ecosystem was able to recover following wildfire or transition to an alternative type of ecosystem. For example, we wanted to know whether grass cover recovers to the same level as before the wildfire or whether a different vegetation type takes over after wildfire.

So, your team examined how the landscape, and specifically how the vegetation community on that landscape responded to large, severe wildfires. First off, how did you find the information and data you analyzed? Secondly, what did you find?

We were lucky enough to gain access to an amazing new data set from the Rangeland Analysis Platform, a project led by researchers from the University of Montana in collaboration with the Bureau of Land Management and the Natural Resources Conservation Service’s Working Lands for Wildlife team. It provided us with information on vegetation cover across much of the Great Plains that hadn’t been available over such large areas before. What this meant was that we could ask questions about the outcomes of large wildfires on vegetation across vast extents of the Plains to gain a fuller picture of wildfire in this region.

While we know that fire was historically an important part of the Great Plains, there is also concern in this region that fire can cause irreversible changes to vegetation. For instance, there are a number of programs that promote re-seeding following wildfire to prevent desertification, that is, the conversion of a vegetated area to bare ground. What we found was that the Great Plains is highly resilient to wildfire. At the biome level, all vegetation returned rapidly to pre-fire levels. In every ecoregion, we saw rapid recovery of perennial and annual forbs and grasses. Our findings echo over a century of research demonstrating grasslands in the Great Plains are highly resilient to wildfire.

The researchers found that perennial vegetation cover came back quickly following fire and that bare ground returned to pre-fire levels just as quickly. Figure courtesy of Dr. Donovan.

Was there one vegetation community or one location within the Plains where fire did cause a long-lasting change in the type of vegetation cover?

Yes, in the northwestern Great Plains ecoregion we saw persistent decreases in tree cover following wildfire over our study period. This helps confirm findings from more localized studies that indicate that fire has the ability to control and remove woody vegetation in some rangeland systems. The northwestern Great Plains is dominated by ponderosa pine trees, which can be rather fire sensitive compared to some re-sprouting species in the southern Great Plains, like mesquite.

In the Northwestern Great Plains, the researchers found that tree cover decreased following fire. Figure courtesy of Dr. Donovan.

Does drought play a role in how vegetation responds to wildfire?

We found that drought can amplify the immediate response of vegetation to wildfire. For instance, if a wildfire occurred under more severe drought conditions, there was generally a greater initial loss in perennial forbs and grass cover. However, we didn’t find that drought had any impact on long-term losses of vegetation cover. In other words, wildfires burning under more extreme drought conditions did not impact the probability of vegetation recovery, though recovery may take longer than if wildfire had burned under moist conditions.

Your team found that woody vegetation burns disproportionately more often than other land-use types, and that in some places it is the one vegetation community that is least likely to return. Given that encroaching woody species have a negative impact to water, wildlife, and other resources on the Great Plains, that seems like it could be a good thing for rangelands. Is that the case?

BLM wildlife biologist Randy Howard lights a prescribed fire on the Sand Ranch in eastern New Mexico. Prescribed fires reduced fuel loads on the land, which in turn reduced the spread of the East Cato wildfire in July 2017.

Yes and no. For wildlife and vegetation that depend on a prairie environment, wildfires can provide a pathway for re-gaining rangeland lost to woody vegetation. In fact, some landowner groups in the Great Plains and elsewhere have viewed wildfire as a restoration mechanism that can be used as a launching point to prevent the re-establishment of problematic woody species like Eastern redcedar. On the other hand, we know that large wildfires can pose a risk to human communities, particularly, when they occur in more volatile woody fuels. How do we balance that? We utilize prescribed fire. The Great Plains was one of the most frequently burned regions in the world historically (with some locations burning every two years or less). Vegetation in the Great Plains has a long history of thriving with fire, which our research helps to emphasize. Frequent applications of prescribed fire is an effective way to help reduce wildfire risk while re-integrating an important ecological process into grassland ecosystems.

 

 

What are the key takeaways that you want people to understand from your papers?

  1. In the Great Plains, our grasslands are able to recover rapidly following fire, even under extreme drought conditions.
  2. Removing fire from these systems may have inadvertently increased the risk of large wildfires by allowing woody encroachment.
  3. Using fire as a management tool could help reduce large wildfire risk in some regions by reversing and preventing further woody encroachment.

Meet the Expert

Will you tell us a bit about your research interests and what you’ll be focusing on next?

Dr. Victoria Donovan is a researcher at the University of Nebraska, Lincoln. Photo courtesy of Dr. Donovan.

 

I am really interested in understanding how processes like fire structure and shape ecosystems. In this rapidly changing global environment, I think understanding this will be key to building ecosystem resilience and managing ecosystems that we depend on. I have a background in wildlife research, so I am hoping to take the findings that I have learned here and integrate them with wildlife data to get a better picture of how animals, plants, and processes like fire shape one another and how we can use these interactions to plan for and adapt to future change.

 

What keeps you busy when you’re not working on a research project?

I am big into travel. I love to explore the wilderness of different countries, learn about new cultures, and try new and delicious foods. While I am saving up for my next trip, I am camping, hiking, kayaking, and volunteering with my local animal shelter or youth organization.

Cake or pie?

Definitely cake and preferably chocolate.

New Report Highlights LPCI’s Outcomes Since 2010

Released this month is a new report detailing the conservation outcomes achieved through the Lesser Prairie-Chicken Initiative (LPCI) in the southern Great Plains.


Report cover image.

Click on the image to download the report.


With 95% of lesser prairie-chicken habitat on private lands, conservation efforts focused on private working lands are critically important to the species and rural economies.

Report findings show that NRCS worked with 883 landowners to conserve 1.6 million acres, which is 107% of the original goal outlined in the LPCI strategy.

Habitat suitability for prairie chickens improved by 11% for every 1% of the landscape that NRCS put into Prescribed Grazing.

NRCS worked with producers to transition expiring CRP fields from idle to working grasslands. These actions contributed to the outcome that 60% of expired CRP fields in the region remained as grasslands a decade later.

Peruse this report to learn more about outcomes in conservation achieved for Great Plains grasslands.

>Download the report<<


 

Western Working Lands Snapshot | Pollinators

Monarch butterflies are one of the best known and most imperiled pollinators. Read on to learn more about pollinators and what producers can do to help them out. Photo: NRCS


This month’s Western Working Lands “Snapshot” celebrates pollinators. These busy bees, birds, bats, and other critters help plants reproduce and are a critically important part of natural and agricultural systems.

Led by the USDA’s Natural Resources Conservation Service, Working Lands For Wildlife uses voluntary incentives to benefit America’s agricultural producers and at-risk wildlife.


By Brianna Randall

What is pollination?

Pollination is the first step in the reproductive process of plants. It happens when small grains of pollen are transferred between the male (anther) and female (stigma) parts of a flower. Since plants are rooted in place, they rely on wind, water, or animals to move their pollen between flowers, which in turn creates seeds that bring forth new plants.

Pollinators help plants reproduce.

Over 80% of the world’s flowering plants rely on a pollinator – an insect, bird, or other animal – to reproduce. Critters that help transfer pollen include bees, bats, butterflies, hummingbirds, beetles, ants, and many other animals.

Without pollinators, 80% of the world’s flowers wouldn’t be able to propagate. Photo: NRCS-MT

Pollinators add value for people and wildlife.

Pollinators play an invaluable role in producing the plants that feed people and many of the Earth’s animals. One out of every three bites of food we eat is created with help from pollinators including chocolate, coffee, nuts, and spices.

Pollinators also play an important role in boosting yields on working agricultural lands. Their ecological service is valued at $200 billion each year.  This includes their important role in generating more profitable yields on America’s working agricultural lands, too.

Bees are valuable both for their honey and for their pollination services. Photo: NRCS-MT

How do plants attract pollinators?

Flowering plants have co-evolved with pollinators to recruit the help of specific species using a combination of shape, scent, and color. For instance, butterflies are lured toward bright, sweet-smelling purple or red flowers, while beetles are drawn to dull-colored white or green flowers.

In return for helping out the plant, a pollinator is rewarded with a meal of energy-rich nectar or protein-rich pollen. They also use flowers as shelter, to find mates, or to build nests.

Bees pollinate most of our fresh food.

More than 4,000 native bee species buzz around the United States. Honey bees alone pollinate 80% of all flowering plants, including more than 130 types of fruits and vegetables. Since they are easy to capture, bees can also serve as tell-tales of ecosystem health.

Bees are critically important, and economically valuable, pollinators. Photo: NRCS

Pollinators are a key part of the ecosystem.

Beyond moving pollen around, pollinators also contribute to healthy soils because they foster diverse plant communities. Plus, they are a key part of the food web. Over 85% of birds that breed in the U.S. eat insects, including sage grouse and prairie chickens. Of course, sage grouse and prairie chickens also eat the flowers (called forbs by scientists) that pollinators help produce, making pollinators even more important to these species.

Pollinators and sustainable ranching go hand in hand.

A recent study from Montana State University found that sagebrush rangelands enrolled in rest-rotation grazing plans through the NRCS Sage Grouse Initiative produced better habitat for native pollinators like bees than pastures with no livestock grazing.

Similarly, another study showed that rangelands with sustainably managed cattle grazing had a higher abundance of the types of insects that sage grouse chicks eat than nearby un-grazed land.

By working with the NRCS in creating pollinator habitats, Harlequin Produce’s plantings and cover crops promote a place for bees and other pollinators to thrive. Photo taken June 10, 2019 in Arlee, Montana located in Lake County.

We can all help pollinators recover.

Pollinator populations are dropping alarmingly across North America due to habitat loss, disease, parasites, and environmental contaminants. For instance, the number of monarchs—the familiar orange-and-black butterfly known for its annual migrations—decreased from one billion to 34 million butterflies since 1995 – just 25 years.

Luckily, private landowners are stepping up across the country to protect habitat for pollinators. Through the Farm Bill, NRCS offers dozens of conservation activities that benefit both pollinators and agricultural producers by producing healthy, high-value nectar plants.


Learn more about how the NRCS is helping producers help monarch butterflies, a critically important and imperiled pollinator, in this excellent storymap.

Click the image to see the storymap about how the NRCS is working with producers to benefit monarch butterflies.


>Read more Western Working Lands Snapshots<<

Note: The page opens with the most recent Snapshot; scroll down to find earlier posts.


 

Take the Chicken Challenge | Conifers

Nebraska is on the front lines of an eastern redcedar invasion as illustrated by this photo from the Loess Canyons area. Photo by Dirac Twidwell, UNL


This Chicken Challenge focuses on conifer trees, which are causing a cascade of negative impacts to grassland and sagebrush range across the West. Try the quiz and see what you know about these impacts.

Fun Facts

  • “Conifer” refers to any plant that produces cones. Some conifers, like pine trees, have easily recognizable cones. Others, like the Pacific Yew, have a fleshy cone that looks like fruit and yet others, like juniper trees, have cones that look like berries. The word conifer is a compound of the Latin words for “cone” (conus) and “to bear” (ferre) and directly translates as: “the one that bears cones.”
  • Most conifers have needles for leaves, but not all conifers keep their needles year-round. For example, the bald cypress which grows in southeastern swamps loses its needles each winter and tamarack or larch trees have needles that turn a golden yellow in the autumn before dropping to the ground.
  • Conifer trees like pinyon pine, juniper, and mesquite have always been present on sagebrush and grassland landscapes but have been expanding into areas where they didn’t historically grow over the last 150 years.

Take the Chicken Challenge | Conifers


 

Western Working Lands Snapshot | The Great Basin

This month’s Western Working Lands Snapshot is all about the Great Basin. While the Great Basin may be far from the Great Plains, it’s a fascinating landscape and we thought this post was worth sharing. Let us know what you think!


Definition

Map of North America’s watersheds. The orange section is the Great Basin, where water does not drain to the ocean. Map: WikiCommons

The Great Basin of the western United States is a 200,000 square-mile desert ecosystem—an area larger than most countries—where all of the water drains “inward” into terminal lakes or underground, rather than “outward” into the ocean.

Location

The Great Basin spans most of Nevada and portions of Oregon, Idaho, Utah and California. Its geographic borders are the Wasatch Mountains to the east, the Sierra Nevada and Cascade Ranges to the west, the Snake River Basin to the north, and the Mojave Desert to the south.

Notable Landmarks

Known for its dry climate and unique topography, this region contains mountains, deserts, woodlands, and riparian areas. The Great Basin also includes these noteworthy landmarks:

  • Lowest point in North America: Badwater Basin in Death Valley at 282 feet below sea level
  • Highest point in the contiguous United States: Mount Whitney in the Sierra Nevada at 14,505 feet above sea level
  • Largest saltwater lake in the Western Hemisphere: Great Salt Lake in Utah
  • Largest alpine lake in North America: Lake Tahoe in California and Nevada

Basin and Range Topography

The Great Basin is characterized by a series of tall, rugged mountain ranges that parallel low, broad valleys (or basins). The valleys are usually desert shrublands with elevations around 4,000 feet, while the mountain peaks often soar above 10,000 feet.

Aerial view of basin and range topography. The darker areas are forested slopes on mountain sides, the lighter areas are dry valley bottoms. Photo: WikiCommons

This type of “basin and range” topography is created as the Earth’s crust spreads apart. Mountains form where the crust is pushed upward along moving fault lines, while basins appear where the crust stretches and becomes thinner.

Climate 

Because it spans diverse elevations and latitudes, the climate varies throughout the Great Basin. Most of the region experiences warm summers, cold winters, and arid conditions. Situated in the rain shadow of the Sierra Nevada and Cascade mountain ranges, the Great Basin’s average annual precipitation is just 6 to 12 inches and mostly falls as snow.

The Great Basin is characterized by dry valleys. Photo: NPS

Ten thousand years ago, many of the valleys in the Great Basin were covered with water from large lakes formed by melting ice. Today, only remnants of those vast lakes remain, such as the Great Salt Lake, Pyramid Lake, and Walker Lake.

Vegetation

The Great Basin is dominated by sagebrush, salt desert shrublands, pinyon-juniper woodlands, and other mixed shrub- and woodlands.

In the higher elevations where temperatures are cooler and precipitation rates are higher, alpine and sub-alpine forests dot the mountainsides. These areas are where you can find bristlecone pines, the oldest organisms on Earth that can live nearly 5,000 years! These high-elevation forests transition to pinyon-juniper woodlands in the foothills. At the bottom of some valleys, the soil becomes salty and so dry that only certain types of heat- and salt-tolerant shrubs grow.

Many of the Great Basin’s mountains support high-elevation plant communities as shown in this photo of Mount Wheeler. Photo: NPS

Animals

From rattlesnakes and tarantulas to golden eagles and sage grouse, the Great Basin is home to diverse species of wildlife. Abundant rodents scamper across the landscape, including black-tailed jackrabbits and kangaroo rats, while larger mammals native to the region include pronghorn, mule deer, mountain lions, coyotes and bighorn sheep.

The Great Basin Rattlesnake is just one of the many wildlife species that call this rugged landscape home. Photo: USFWS

Even shorebirds and salamanders can be found in the rare-but-precious wet places, like springs, creeks, playas, or terminal lakes. These “emerald isles” in the Great Basin’s deserts provide critical food, water, and shelter for much of the region’s wildlife.

People

Many different Native American tribes made their home in the Great Basin, including the Ute, Shoshone, Paiute, and Navajo. Some of these traditional cultures used horses, while others traveled by foot. Tribes typically moved frequently during the summer in search of food and water resources, while maintaining winter villages along valley bottoms.

Until the railroad came through in the late 1800s, the Great Basin’s endless rows of scorching valleys and steep mountains created barriers for early Americans migrating west. This rugged landscape is one of the most sparsely populated parts of the United States.

The Great Basin’s two largest cities are Salt Lake City, Utah and Reno, Nevada. Livestock ranching and mineral extraction (including gold, silver, mercury, lithium, copper, and iron) are the main economic drivers for small communities in this region.

Salt Lake City, Utah is one of the largest cities in the Great Basin. Photo: WikiCommons

Conservation Concerns

Altered wildfire regimes represent the most widespread challenge to conserving the Great Basin’s native ecosystems. The proliferation of invasive species like cheatgrass has increased fire size and frequency relative to historic rates, especially at lower elevations. Ironically, at upper elevations, fire suppression efforts have allowed pinyon-juniper woodlands to become thicker and spread into imperiled sagebrush shrublands. These changes threaten native wildlife, and also impact rural economies—like ranching and recreation—that rely on healthy sagebrush ecosystems.

Healthy sagebrush ecosystems are important to the wildlife and people that live in the Great Basin. Photo: NPS

Another threat to people and wildlife in the Great Basin is dwindling freshwater supplies, which are necessary to meet growing demand from cities, industry, and irrigated agriculture.

Luckily, proactive conservation partnerships like USDA-NRCS Working Lands for Wildlife are working with private landowners to address these challenges with creative, voluntary solutions that maintain this vast and beautiful landscape for future generations.


>> Read more Western Working Lands Snapshots <<